High-Performance Computing (HPC) Enhancements to Military Research

James L. O'Daniel, James T. Baylot, and Robert L. Hall Geotechnical and Structures Laboratory Vicksburg, MS

> HPC User Group Conference Biloxi, MS 18-21 June 2001

OVERVIEW

Application of HPC resources to the survivability of structures under the effects of explosive attacks

- Offensive and Defensive attacks
- Used for Predictions, Validation, Design, and Model Development
- Examples Discussed in this Paper
 - CMU walls
 - Window Retrofits
 - Bridge Beams

NUMERICAL CODE/ HPC SYSTEM

- CSM Finite Element code ParaDyn (LLNL) used for all simulations (parallel version of DYNA3D)
- Dynapart used to partition meshes onto multiple processors
- Analyses performed at ERDC MSRC on the Origin 2000 and 3000 systems
- Minimum Processors: 2
- Maximum Processors: 64

SCALABILITY

 Bridge Beam exhibited excellent scalability

- CMU did not scale as well
 - due to interface problems
 - only up to 32 processors due to limited problem size

LOAD BALANCE

Number of Processors	Load Balance Error, percent	
	Bridge Problem	CMU Problem
2	0.006	0.41
4	0.043	0.22
8	0.0069	1.94
16	0.143	4.76
32	0.080	1.26
64	8.44	
128	1.24	

Load Balance Error = Maximum processor time - minimum processor time divide by minimum processor time * 100

CMU MODELING

- Each CMU Block discretized with solid continuum elements
- Sliding Interfaces (Contact Surfaces) defined between each block
- Failure Criteria (normal and shear directions) set for each sliding interface

CMU WALL RESPONSE

- Sliding interfaces placed entirely on single processor (required)
- 32-processor run partitioned very poorly
- One block wide wall one-way response
- Used to design a set of TSWG experiments (> 40 subscale tests)
- Determined charge size and standoff to produce specific wall response and fragment velocity

CMU RESULTS

a) Experiment

WINDOW RETROFIT DESIGN

- Protecting people from window debris
- Determining structural integrity of the system
- Analyzed ~40 configurations via finite element model
- Typical model approximately 25,000 elements

- 4 to 8 Processors per run
- Could not Partition on to 16 Processors
- Several Partitions left without Elements

PARTITIONED RETROFIT MODEL

Excellent Load Balancing

VARIATIONS OF DESIGN TYPES

"Yoke" design

Bar and plate design

Solid design

Bar and plate design

WINDOW RETROFIT RESULTS

- Determined two final designs
- Both designs survived the experiment

Yoke connection

Solid connection

BRIDGE BEAM RESPONSE

- Wanted to Develop Engineering Level Model
- Seven Weapons
- Bomb Placed at Various Standoffs
- Vertical, 10°, 22.5°, 30°, ar 45° (angled nose-toward and nose-away)
- Concrete Target made Large Enough to Determine Total Extent of Damage
- Damage Superimposed on Actual Beam Size

METHODOLOGY FOR MODEL DEVELOPMENT

Paradyn validated against limited experimental data

Paradyn used to generate extensive database of results

 Simplified Method developed from results of extensive database of FE runs

FINITE ELEMENT MODEL

- Applied Pressure Boundary Conditions (representing fragments)
- 1,843,200 solid continuum elements
- 1,970,657 nodes
- No Other Boundary Conditions
- Concerned with ~2.0 msec
- 128 Processors

TYPICAL FRONT FACE DAMAGE

US Army Corps of Engineers

Through the Thickness Damage

DAMAGE ELLIPSOID

Vertical Plane Through Weapon Normal to Beam

Front Face of Beam Center of Circle Opposite Weapon c.g.

SIDE-ON RESULTS VS ENGINEERING MODEL

CONCLUSIONS

- HPC simulations provided invaluable assistance in the prediction, design, and model development for our needs
- Simulations enabled:
 - successful design and execution of the CMU experiments
 - successful retrofit experiment (retrofits survived anticipated load environment)
 - developed engineering model that has been implemented into suite of bridge attack software

FUTURE EFFORTS

Numerically Intensive Problems/Codes:

- Blast in Urban Terrain
- Close-in/Contact Detonations
- Arbitrary Lagrangian Eulerian (ALE) calculations
- Coupled Codes (CSM to CFD currently)

